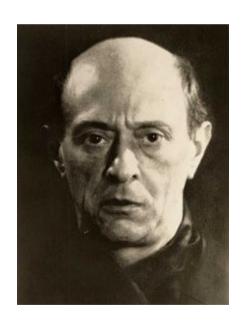
Studie II (1954) e il Serialismo Integrale

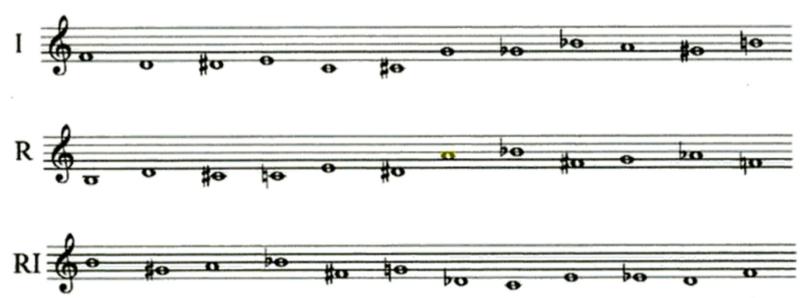

La musica tonale

- L'ascolto si fonda su previsione e sorpresa, attesa e risposta.
- L'ascoltatore deduce durante l'ascolto una gamma di possibili sviluppi. Ovviamente è portato ad aspettarsi gli sviluppi più elementari e logici previsti dal sistema tonale e dall'armonia.
- La musica gli risponde in due modi possibili: conferma le sue previsioni (ad esempio con una cadenza perfetta) o lo sorprende con sviluppi più elaborati ma comunque interni all'organizzazione stabilita (ad esempio con una modulazione) (A. Baricco)

La musica seriale

Il serialismo è una tecnica di composizione che utilizza una serie di valori, definiti numericamente, per comporre e definire i diversi elementi musicali.

Una prima forma di serialismo, applicata alla sola altezza, inizia nel 1923 con **la musica dodecafonica**.


Tale tecnica compositiva è ideata nel 1923 da Arnold Shoenberg, per eliminare la prevedibilità tipica della musica tonale.

Musica dodecafonica: regole di composizione

1) Il compositore sceglie una «serie» di **tutti e 12 i suoni della scala cromatica** (senza ripetizioni), detta serie *originale* (O);

2) da questa deduce la serie *inversa* (I), la serie *retrograda* (R), e la serie *retrograda inversa* (RI).

Musica dodecafonica: regole di composizione

- 3) Il compositore può sovrapporre le serie, e trasporle iniziando da qualsiasi nota della scala cromatica per un totale di $12 \times 4 = 48$ combinazioni seriali utilizzabili in un'opera.
- Scompare il concetto di tonalità, e di centro armonico.
- Tutte le note hanno lo stesso peso

Il Serialismo Integrale

- è un ulteriore sviluppo della musica seriale
- utilizza le **serie di numeri**, e i concetti matematici di **insiemi** e delle **proporzioni numeriche**, anche ad altri parametri musicali quali ritmo, durata, dinamica, timbro e frequenza delle note.
- l'eliminazione di punti di riferimento all'interno del tessuto musicale sia nell'armonia sia nei timbri: la mancanza di ripetizioni e l'assenza di un ordine gerarchico tra le diverse figurazioni fanno sì che l'ascoltatore si trovi in una posizione di spaesamento, non riuscendo a riconoscere le abituali funzioni armoniche valide nel sistema tonale.

Il Serialismo Integrale

- Il s. i. si situa dunque al termine del processo di ampliamento dello spettro sonoro inaugurato dal cromatismo wagneriano e proseguito attraverso l'emancipazione della dissonanza nelle opere della Scuola di Vienna.
- Il S. I. si basa su una completa matematizzazione, sulla rigida razionalizzazione del processo compositivo e sul costruttivismo tipico della nuova musica teorizzata alla scuola di Darmstadt.

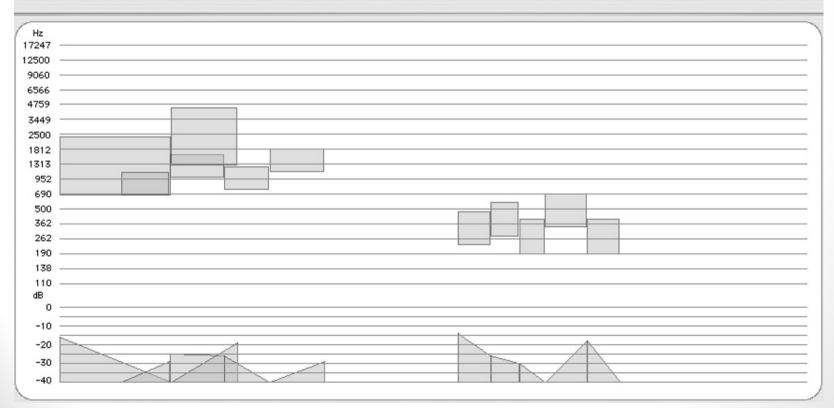
Karlheinz Stockhausen

- È stato il primo musicista a utilizzare gli oscillatori e la **sintesi additiva** per CREARE NUOVI TIMBRI, anzichè imitare gli strumenti tradizionali.
- Estende la composizione, quindi, anche al timbro.
- S. è interessato a produrre sinteticamente i suoni
- S. è il primo ad includere, nella composizione di un brano musicale, anche la costruzione dello «spettro sonoro» di ognuno dei singoli timbri. Tale spettro è riportato nello spartito delle opere.

Studie II: un'opera pionieristica

- Applica la SERIALIZZAZIONE in modo radicale
- Con le strumentazioni elettroniche si può serializzare non solo l'Altezza delle note e la Durata delle note (vedi la Musica Dodecafonica) ma anche le singole componenti sinusoidali di ogni nota (novità assoluta!)
- Per la prima volta la composizione di un brano prevede anche l'applicazione di regole di composizione anche dei timbri.
- L'idea di partenza è far derivare tutto dal numero 5.
- Il brano è in 5 sezioni

- La scala va da 100 a 100x5=500Hz (2 ottave e una terza maggiore), ed è divisa in 25 parti, anziché 21 come nel sistema tonale
- Ogni nota si ottiene moltiplicando per $\sqrt[25]{5}$ la frequenza della precedente nota.
- Le note quindi non seguono l'intonazione dalla scala temperata ma ci appaiono «scordate»
- Ogni nota è formata da un insieme di 5 componenti sinusoidali, dette *mixture*. Queste componenti non sono armoniche della fondamentale, ma hanno tra di loro un intervallo pari a 1, 2, 3, 4, o 5 x $\sqrt[25]{5}$
- Ci sono 5 varianti di mixture


Le mixtures, numerate a 1 a 193, definiscono il materiale sonoro (in Hertz) per questo studio

1 100	107	114	121	129	26	138	147	157	167	178	47	190	203	217	231	246	68	263	280	299	319	340	89	362	386	412	440	469
£ 107	114	121	129	138	27	147	157	167	178	190	48	203	217	231	246	263	69	280	299	319	340	362	90	386	412	440	469	500
3 114	121	129	138	147	28	157	167	178	190	203	49	217	231	246	263	280	70	299		340		386	91	412				
4 121	129	138	147	157	29	167	178	190	203	217			246			Andrew Co.		319		362			92			11 6 6 6 6		569
5 129	138	147	157	167	30	178	190	203	217	231	51	246	263	280	299	319	72	340	362	386	412	440	73	469	500	533	569	607
6 100	441	120	147	147	21	138	157	178	203	231	52	190	217	246	280	319			299		386		94	362				
				190			178		231	263	53	217	246	280	319	362		299					95			533		
7 114				217			203		263	299	54	246	280	319		412	100	340		440			97	469	533			
8 129				246				263	299	340	55	280	319	362	412	469			440	500 569		647	97			785		
9 147								299		386	56	319	362	412	469	533	"	440	300	307	04/	,00						
10 167	190	21/	240	280	.,	20									2/0	412	78	263	319	386	469	569	99	362	440	533	647	785
				047	24	13	167	203	246	299		190		280		500		319	386	469			100	10000				952
11 100								246		362			280	0.000		607			469		1000	837	101					1150
12 121					31	20	3 246	299	362	440	59	280		500	100	736				690				647				1400
13 147					30	24	4 299	362	440		60	340	500	607		893	82	569	690	837	1010	1230	103	785	952	1150	1400	1/00
14 178					44	29	9 362	440	533	647												701	104	262	440	607	785	1010
15 217	263	319	386	469							42	190	246	319	412	533		263			569	952	104					1310
						13	8 178	231	299				110	412	533	070		340	440	736			106					1700
16 100					4	17	8 231	299	300				149	533	970	073		440		952			107	785	1010	1310	1700	2200
17 129					4.5	23	1 299	386	300				E 22	690	673	1130						2060	108	1010	1310	1700	2200	2840
18 167				100000000000000000000000000000000000000		. 20	0 386	500	041	837	66	533	690	893	1150	1490				T. H								
19 217					A	38	6 500	647	837	1080							88	952	1310	1810	2500	3450	109	1310	1810	2500	3450	4760
20 280	362	46	9 607	785	ST					1810	67	690	952	1310	1010	2500		73										
				-		6 50	0 690	952	1310	1810																		
21 100																												
22 138	190	26	3 362	500																								

Studie II

È il primo spartito mai pubblicato di musica elettronica. S. inventa un nuovo sistema di notazione.

Karlheinz Stockhausen: Elektronische STUDIE II (1954)

Studie II: come è stato creato?

- All'epoca della composizione (1954) i mezzi tecnici per realizzarla erano pochi e rudimentali, e S. dovette inventare numerosi artifici e affrontare un lunghissimo lavoro per portarla a termine.
- S. usò la **sintesi additiva**, ricorrendo a **5 oscillatori** per generare il timbro di ogni singola nota.
- Ogni oscillatore crea una oscillazione sinusoidale, priva di armonici.